EA-467 ATTITUDE CONTROL - Thrusters LAB

(rev b)
Fall 2017
[image: image1.png]Target 63

e[[o]o

o right | go right | do nothing | go 1ef | go feft

= | = — | —
gonignt | _do do_[golen
nothing nohing|

-®TE -®TA 0 OTA ®TB

No changes. This is OK as used in 2016
Introduction: This is the final part of the Attitude Dynamics and Control series. The first predicted and then measured the spacecraft’s moments of inertia. The second developed a sun sensor and magnetometer for attitude estimation. The third used the magnetometer to despin the spacecraft using a B-dot control law. In this lab you will develop attitude control using thrusters to first eliminate any initial rotation rates (sDot) and then align to the sun (SunAlign).

[image: image2.png]Desired Pointing Angle

|l [o]o

o right | go right | do noihing | go et | go feft

= | = — | —
gonignt | _do do_[golen
nothing nohing|

PTB -PTA O PTA PTB

Part I: Calibration and Setup: In this experiment, two fan thrusters are used, one to rotate Clock Wise and the other to rotate Counter Clock Wise as shown above. Of course there is no air in space, but the thrust from these fans is comparable to cold-gas thrusters on actual spacecraft (excepting the string forces, and a small delay of course). You will use these thrusters to implement a de-spin algorithm to reduce the spin to near zero and then align with the Sun. Since the motor of the fans contains magnets, we cannot use the magnetometer for attitude estimation but will use the sun vector.

1) Be sure to get the same numbered LABsat that you had in the last lab.
2) ADCS System Driver Setup: This lab also uses the L298 dual power driver chip to take the 0 and 1 signals from the CPU and uses them to turn on power to the fans in either direction. The transistors are turned on in pairs to energize the load one polarity or the other using the HIGH or LOW commands of your CPU on the two driver pins Dr1 or Dr2 to activate the appropriate fan. Only one of the dual drivers is used. Remove any Torque Coils that may still be plugged in and plug in the red/black fan wires to the Dr1 and Dr2 pins as shown here. Dr1 enables the CCW fan and Dr2 enables the CW fan. Be sure the single orange ADCS power pin is also plugged into any of the top right 3 pins of the ADCS block to power the Driver Chip.
3) [image: image3.png]

Battery Power Setup: The bottom row of the battery power block is ground and the top row is +8v. The power plugs are asymmetric, be sure to plug them in with the black wire down as shown here. There are two wire loops on the left and right ends of the power block for charging from the bench supply set to 8.4v as shown. The Comm and ADCS power may be plugged in to any column. The Arduino chip is powered from 5 volts while plugged into the USB port and from the ADCS power when disconnected from the USB. So be sure to plug in the yellow/black ADCS and orange/black Comm lines for flight (not yet).
4) [image: image4.png]Labsat Battery

i =ooc
v\

Comm ADCS

Comm Setup: Leave the orange/black Comm Transmitter power line unplugged until needed to save power. The ADCS driver chip power also consumes nearly 1 watt just idling so you can leave it unplugged (the single orange wire on the ADCS block above) as well until Thruster power is needed. Also when ready to transmit, you will connect the Labsat transmitter to the Arduino by plugging in the white wire (TXD) to the transmitters pin 2.
5) Ground Station Setup: As before, turn on your Kenwood Radio connected to a workstation Serial port cable running PuTTY at 9600. This will display the RF telemetry from your Labsat whenever the white wire connects the Arduino TXD pin 3 to the Comm board pin 2. Leave disconnected until needed to reduce interference on the Command channel shared by all Labsats.
6) ReCalibrate Sun Sensors: Download the program SunCalArduino14 from Blackboard and Save-As on your drive. It contains an Auto-Max and Auto-Cal routine to come up with similar Cal factors and offset to the ones you determined in Part 2 of the ADCS lab series, this time with the lamp at 36 inches from the sensors. You will find these new Cal factors in this lab. Run the code and confirm it is displaying serial data via the USB. Then plug in the Comm power and confirm telemetry received via PuTTY. Then disconnect the USB cable and hang the LABsat on a 3 turn pre-wound string. As the labsat spins, it will determine the max +/-X and +/-Y sun sensor values and also the center offset and transmit those in the telemetry (received via radio/PuTTY). It only transmits telemetry when there is a new value. After a minute or so, and no new updates on the values, then Write them down! Do not move bright objects (albedo) near the satellite during this process.
7) Write down the new Xcal and Ycal factors (Xcn, Ycn) and the offsets (Xo and Yo). You will plug these into your flight code below. Wind up the string 3 turns, re-hang your spacecraft, press the Arduino Reset button and repeat the test to confirm your values.
Part J. Despin with sDot Routine: Remember how you did this test in EA204 without a processor and had to add a viscous damper (big piece of paper) to slow down the response of the spacecraft to better match the delays in the fans as they got up to speed? In this lab we will include not only a control loop based on pointing error, but also on spin rates to try to reduce overshoot.
[image: image5.png]

The despin algorithm first determines the angular velocity (ω) (in the XY plane) by the difference in azimuth (AZ) angle between each sample. You have to decide when to fire the thrusters relative to two angular velocity thresholds ωTA and ωTB. Since the fans are either on or off, just like thrusters you will use a bang-bang control process with hysteresis as shown in the sketch to the right. The arrows indicate the “trend”. If the arrow is pointing right, it means the angular velocity is increasing CW. If it is pointing left, it is decreasing CW, or if it already going CCW then the left arrow means it is increasing CCW. If the LABsat is beyond the larger threshold B, you should activate the opposing thruster and then turn it off when it gets below |ωTB|.
In the zone between ωTA and ωTB you will need to energize the opposing thruster only if you are entering this region from the zero direction. If you enter this ωTA-to- ωTB region by slowing down from a higher rate larger than ωTB, then turn off the thruster as soon as it enters the range. Always turn off the thruster in the deadzone between +/- ωTA. All of the IF-ELSE conditions are written, but you have to replace the function FanXXX with the proper FanCW, FanOFF, or FanCCW function call.
Download the program ThrusterSun-Arduino14. SaveAs immediately to your own drive before making any changes. Set the Sun sensor cal factors for your satellite. This flight code has two sections in the main Loop, sDot and SunAlign. Initially, the SunAlign code is skipped with a goto SkipAlign line so you can concentrate on writing the sDot control code portion first. In the sDot portion, you will see three major test conditions, sDot = 0, sDot positive and sDot negative. Within each, there are also tests against the ωT thresholds. These thresholds are shown in the table along with the suggested control action.

You can see the actual function routines for the FanCW, OFF, and CCW that control the fan pins after the main loop. The FanXXX call is a dummy routine and a place holder where you will place the correct function all to the desired direction in the //SDOT ROUTINE section of the code. Do not change any of the “FAN FUNCTION” portions of the code. You need to replace all the calls to this FanXXX function up in the //SDOT ROUTINE area with the appropriate Fan function as needed and execute the code while still connected to the PC.
Test your program with slow hand rotation to validate that your thrusters fire as expected. The green LED on the fan indicates the fan is accelerating towards you. Test it going into and out of the +/- ωTA and ωTB rate thresholds on either side and in either direction. Confirm it performs as expected. Observe how quickly it activates the fan to counteract the rate disturbance. Now unplug the cable, plug in the Comm power and white data wire and fly it on the string. Gently test disturbances and values for ωTA and ωTB and comment on performance. It should work very well, stopping rates in less than a turn. Compare by nudging it with the CPU power off.
Part K: Sun Pointing with Thrusters:
[image: image6.png]

To activate the thrusters in a bang-bang sun pointing control law, comment out the goto SkipAlign in the SunAlign code and uncomment the line “SunAlign=1;” Also, uncomment the goto SkipDot line in the sDot code area to skip the sDot routine. As before, the sun sensors and differencing provide both position and angular velocity relative to the sun. Use the same hysteresis concept as before but for Position thresholds PTA and PTB, instead of angular velocity thresholds. If beyond the larger threshold B, activate the opposing thruster. Turn it off when below PTB.
Between +/-PTA and +/-PTB you energize the opposing thruster only if you are entering this region from the Sun direction. If you are entering from beyond B you will turn it off when you first cross into this region. As before replace the FanXXX , in the //SUN ALIGN ROUTINE portion of the code this time, with the proper Fan function.
Test your program to validate that thrusters fire as expected in the various PTA and PTB regions depending on direction of movement. When ready for flight, unplug the USB cable, plug in the Comm power and white data wire and hang from the string and test. Exercise gentle disturbances and possible changes in PTA or PTB and observe results. Comment on the sun pointing errors that result.
Part L: Combined Sdot and SunAlign:
Now, comment-out both of the goto Skip… statements so that both the sDot and SunAlign code areas are active at the same time. Look carefully at the end of the sDot code and you will see a statement that turns on SunAlign whenever the rates are less than 3 and turns it off otherwise. Disturb the spacecraft and notice how quickly it swings toward the sun. With sDot active even while trying to SunAlign, the Labsat now has rate control, and so you can probably tighten up the Position Thresholds from the original 15 and 60 degrees, down to maybe 4 and 15 degrees. Give it a try.
[image: image7.png]=

LABSAT

Part M: Reaction Wheel:

The Reaction wheel code is identical to the Thruster Fan code. Just plug in the yellow/black leads to the wheel instead of the fans to the ADCS driver block. But the wheel is very massive relative to the spacecraft and so will over torque the control mode and spin out of control!. So, next reduce the “gain” by changing the 800ms loop time (needed for fans to get up to thrust, but overkill for the wheel which is instantaneous) to 100. Now you will see the wheel somewhat in control without too much overshoot. Reducing this to 50 or maybe even 30 will effectively reduce the response of the massive wheel. And it makes a very rigid sun-align spacecraft. Although this delay term is not really a “gain”, the result is essentially the same because reducing the delay time that the control is actually active during the cycle time is a form of duty-cycle control or “pulse width modulation” which is a very common way of making pulsating on/off digital outputs act linear.
Lab Report (Final one for the semester): To be determined by your instructor.
1

